How to write a new signature file for DROID

A guide by NLNZ

Te Puna Matauranga o Aotearo

www.natlib.govt.nz NENATIONAL LIBRARY

OF NEW ZEALAND

Document Control

Revision history

Revision Date Author Reason for Change
Vi 25.1.12 J Gattuso DRAFT
V1.1 09.02.12 J Gattuso RELEASE

2/14

Table of Contents

Table of Contents

1.

HOW TO WRITE A NEW SIGNATURE FILE FOR DROID.......ccccceettieeennnecscecereeeseeeenncens 4
1.1. UNDERSTANDING THE DROID SIGNATURE FILE STRUCTUREccctttuuueeeeeeeeeiiiiieeeeeeeeneeeennns 4
1.2, HEX VIEWERS «.oiittieoeee ettt ettt e e e e et e e e e e e e e e e aeeeeseeeeeeaa s reaesseeeeeeaaaaeeseeeseeannnas 6

MAKING YOUR OWN SIGNATURESccucteeeeeeerencececreceecescescessssscssse 10
2.1. STEP 1 — COLLECT SET OF SUITABLE OBJECTS ...evuunniiiiunneeieineettenneereanneeeesneeetaneeersnnneeeraneesesnnnes 10
2.2, STEP 2 — HEX HEX HEX teuuiiiieee ettt ettt e e et e e et e e et e e e e e e et e e e s aanneeeeanneeeennnes 11
2.3, STEP 3 — IDENTIFYING THE FORMAT ...uutiiitnneiieie e ettt eeeeieeettaeeestaneeeeaaeeesaneeessnnnsessanneeesannes 12
2.4, STEP 4 —WHRITING THE XIVIL SNIPPET ... tiiuunieiiiie ettt e et e e et e e et e e eeae e e et e e esaaneeeeanaeeesanaes 12
2.5, STEP S5 — TESTING TESTING TESTING .uuuteiiiunneiieeneeettnneeeteneeettanneeestanneeessnneessanseessnneessaneeerrannes 14
2.6. STEPB6—SUBMITTOPRONOMoouuiiiiiiieiieee ettt ettt e e e et e e e e e eeanaas 14

3/14

How to write a new signature file for DROID

1. How to write a new signature file for DROID

This guide describes the method used by NLNZ to create new file format signatures to submit to
PRONOM for inclusion in the PRONOM format register.

To be able to follow this guide, you will need to have access to a working version of the TNA tool
DROID?, some files to play with, a hex viewer (explained in detail below), and XML viewer/editor
(explained in detail below) and an hour or so to work through the examples.

Notes:
a) Insome cases, new signatures are a best guess based on limited access to example files. This

means they might not be perfect, and cause either false positives (matches against files that
are not of the format being described) or false negatives (files of the format being described
not being matched by the signature). This is unfortunately unavoidable when small sets of
example files are being assessed, although this paper describes the steps taken to try and
mitigate this problem.

b) There is often little or no detail about the ownership, technical notes or other supporting
information for old formats. Assumptions are made that older formats are either abandoned,
or have no restrictions on the sharing of specific format patterns.

1.1.Understanding the DROID signature file structure

Before we step into the specifics of how to create a signature for a new format, it’s worth exploring
the tools in hand and becoming familiar with the types of information we are going to use.

Firstly, take a look at a DROID signature file. | am currently running DROID v6, and find the format
signatures in the following location on my Windows XP machine:

C\Documents and Settings\MY_USER NAME\.droid6\signature_files.

This is where DROID deposits its signature files once it has downloaded them on my machine, yours
may differ, and you may need to hunt around a little bit. You should see at least one XML file with
the naming convention ‘DROID_SignatureFile_Vn.xml’ (where ‘n’ is the version number of the
signature file). Open one of these files in a suitable XML viewer — if you don’t have specific XML
editor/viewer, most modern browsers support structured views of XML file — try dragging the file
into a new browser tab.

! http://sourceforge.net/projects/droid/

4714

http://sourceforge.net/projects/droid/

How to write a new signature file for DROID

‘@ Mozilla Firefox
Fle Edt Yiew Hitory Bookmarks Tools Help

| L] fles}{}C:{Documentse. JgnabureFilz_iag.aml | +

& {71 FilefjjC:iDacuments and Settingsigattusojf droidé signaturs_files/DROID_SignatursFile_y45,xml

This 3L file does not appear to have any style information assoctated with it. The document tree is shown below

— <FFSignatureFile DateCreated="2010-12-06T10:09:34" Version="45">
— <InternalSignatureCollection>
— <InternalSignatwe ID="9" Specificity="CGenenc">
— <ByteSequence Reference="BEOFoffset">
— <SubSequence MinFragLength="0" Position="1" SubSeqMaxOffset="0" SubSeqMnOffset="0">
<Sequence>43482400</Sequence>
<DefaultSlaft=5</DefaultShift>
<Shift Byte="00">1</Slift>
<Shift Byte="24">2</Slift=
<Shift Byte="45">3</Slift>
<fSubSequence>
=/ByteSequence>
</InternalSignature=
— <InternalSignature ID="10" Specificity="Generic">
— <ByteSequence Reference="ECFoffset">
— <SubSequence MinFragLength="0" Position="1" SubSeqMaxOffset="0" SubSeqMnOffset="0">
<Sequence>4DID002ZA</Sequence>
<DefaultShift>5</DefaultShift>

Figure 1: XML Viewed in a browser

| won’t go into a full description of the signature file, but it’s worth having a look around to find the
important bits

The DROID signature-file has two main parts; the signature collection, and the fileformat collection.

— <FFSignatuwreFile DateCreated="2010-12-06T10:0%9.34" Version="45">
+ <IntermalSignature Collection=</Internal Signature Collecion=
+ <FileFormatCollection>=/FileFormatCollection>
</FFSignatweFile>

Figure 2: Two main sections of a DROID XML signature file

Part one is a list of signature ‘patterns’, this is in the first main XML block
(<InternalSignatureCollection>). This section contains lists of various byte patterns found inside files.

The second part is the section that links a signature with a PUID record held in the PRONOM dataset.
This section, <FileFormatCollection> links up with the above section, and includes file extension
statements.

Have a look at a single format you recognise, starting in the <FileFormat> area (lower half of the XML
file), and see how a single file format is declared with an ID, a name, a PUID, and a version, then
there is an extension element (that is used to test the extension_mismatch condition), finally it
references any internal signatures <InternalSignaturelD> that relates to the format. If you use a find
function to search for the relevant <InternalSignature> you’ll see how it all fits together.

To understand more about how the signature is constructed TNA have written a very useful guide
called ‘Automatic Format Identification Using PRONOM and DROID’?

| highly recommend reading through — it can look quite complex, but once you get the hang of it, it
will make sense.

It’s also worth noting that you can see the specific signature details in PRONOM record by looking on
the PRONOM website at your format of interest. This is a really handy reference for checking existing
signatures, or when you are creating new ones.

2 http://www.nationalarchives.gov.uk/aboutapps/fileformat/pdf/automatic format identification.pdf

5/14

http://www.nationalarchives.gov.uk/aboutapps/fileformat/pdf/automatic_format_identification.pdf

How to write a new signature file for DROID

1.2. HEX viewers

DROID essentially works by looking for a specific pattern, or set of patterns inside the binary
representation of file. You don’t need to read the binary digits (the noughts and ones) but you will
need to look at the hexadecimal (hex) values that represent the binary content.

This sounds more complex that it actually is, and hopefully by the time you’ve read this section you’ll
have a good understanding of how this works.

To find these ‘mythical’ patterns, we need to open our files in a specific way.
We don’t want to use the native applications for our files — this will give us the intended rendered

view of the object. The view we want is the binary contents of the file. To do this, you’ll need a HEX
viewer. There are a number of freely available HEX viewers you can download.

Once you have installed a HEX viewer, simple open any file via the HEX viewer. This should give you a

view that at first might be a little overwhelming, but once again, with a little practice you’ll soon

figure out what you are looking at. From the HEX view of an object you can start to see the important
3

parts.

5 ot e

s e e e W R VR
DE-FEAS R < BEE e 5ERRRE 52 &30
NEFROEAREIED ASE AP ®Ho A B0 &

[F5 Fiermases %

00 0L 0203 0405 0507 08 09 0alb Oc 0d 0s 0f

00000000 | [89]50 4 47 04 0n 1a 0 00 00 0O 04 49 45 %4 52
0000010 | 03 GO 02 00 00 QO 0Z 00 OB OZ 0O 0O 0 Tb la 43
00000U20 | 400 00 00 0175 52 47 42 00 sece Lc s 0007 -
00000030 | 3a sl 49 4 415 o ds ecel a9z ensh szl :
00000040 | e5 34 el ee 73 ae bS 23 e2 S T 35 ab 20 08 ed
00000050 | B Sa 03 Bo 46 SLad £L 4L Z5a3 B8 3a 23a3 o«
00000DS0 | 00 en S5 04 S0 4400 5L ed CLOD 52 4B 20 &b 0B
00000m0 | b2 £z ae M 726 Se > de 77 If 4 b5 03 137 e
00000080 | £0 47 ££ st ££27 80c2 09 64 b7 0b af b4 cTal

00000090 | 2445 77 5o se a3 b4 B 7¢ €3 o3 bd 52 bd 15 cE
O0ODODD | 4203 le M TOE T3 61 ek falc 54 T B
O0000MBD | 64 fb 9 43 ST 4E 4L 5 G CT 6745 6w 63 Ta 4n
000000c0 | 3a Fe 6 Fe oa fb 67 b4 fe ol tebr O 6r 2aSn
00000040 | c3 3E 60 3 o7 a5 ba i3 13 1 54 e €3 To eB b
0000De0 | ba Q6 <f 57 fS a3 Te 4 T ch bede fx 37 eher .Sibi-juEbbnel
OUODODED | EE €6 £ S faes £541 30 7e Tcee A J5 S5 Ll evGRee-ledwed
00000100 | ea 4 7a @8 facs e e rris moar ar i lcca e i
00O0OL10 | 6= 0B 5221 0392 65 e3 I cf 6o o db bb 05
00000130 | 5o b3 el b3 w45 6c i3 40 55 53 34 Ou 35 14 38
00000130 | 0c =7 201 03 af b €8 36 ba G0 a3 a2 06 26de .
00000140 | e 3T 9T ES fI D 0B Z AL LA T W AW O

OOO0OLSD | Sb 1t oz 61 £6 7 o3 be dr 43 6 lr oo &7 de 61
OIG001SD | 14 63 44 Sb 4T bE S5 bS ch ce 73 ad oS G daTh .chs
OD000170 | 53 db TeeS foef aTfd eB es 46 B2 aecZ 50 a6
0000180 | 7w 68 Tcds BE A 79l SaGb SLOT 7TIDL o3 6
000010 | Se af 1o 7t enfn 47 e £ron sa9r e2ar s st
O00D01aD | b5 9 €395 b 75 9 Of oh b 08 AL lcbe 7o 22
ODO001BD | cebE BE 5 kb S5 ab dD De 5T CE 9B S Teof i,
0000010 | 3874 TS 6E £1dl SAL3 bR EL S5 40 87 7c fh 2
0D000LAD | £b ew 1e T2 G4 9a 4L la €785 1891 04 % 90 9
0000010 | 79 7 6325 3a b3 be 85 5f 54 bo BB bn 65 cdor e
OIGOOLED | OF 3e £f ko S5 f4 Co fh Se O sc Db 75 0b 04 5 g
00000200 | 33 £3 47 B1 3338 Oc £2 44 ed ELAf Gb Sb b3 £b or
OIG00ZI0 | €4 50 543 AL B b e 3cbS Da 6T ed 0 5445
00000220 | er 63 ££00 Sa68 45bE 05 £a f6 o3 cadh efde iy
OIGD0Z30 | 07 24 195 €735 ah 96 1f o6 ELET 36 54 LEOE 6.
00000240 | 1n 83 B4 0f e5 73 Zb @ 0D 43 beBE Ilfd fefD .
00000250 | 45 43 S5 82 bcl bS Bl aD €7 @ &6 cA 6 TE L3
00000250 | 55 7L mE ez 079 SLip 43 5 TwEs 85 S 36 0f -qi,.70.
O0G0OZT0 | Sb 87 Bf 6f e c6 &7 8 4dDT £31c A9 ca ed 36
00000280 | 4 37 Ok 45 cb 1D G336 7R BE 1474 65 I € €3 ndEmew
00000290 | €= £3 35 BE £3eb a8 70 embO Jzal 72 13 07 S5 b
00000240 | 4 54 a2 2 bbba Oc 61 96 3 Ge Wb 95 3¢ be £7

Figure 3: Rendered view of lenna.png test file Figure 4: Binary view of Ienr;-a.;r'ig test file

3 http://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png

6/14

http://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png

How to write a new signature file for DROID

Let’s work through an example, starting with the PRONOM reference page, let’s take a look in detail
at fmt/3*

AThe National Archives

Aoout us Educabon

ssignals > Prasarvation > PAONOM > Sasrch by format » Dats

The technical registry

Q Phel
etails: File format summary
Simple search ¥ PRONOM Unique identifier Software Vendor Ufecycles Migration Pathwarys
Details for: Graphics Interchange Format 1987a B sevess XMLICSY Zpint
Ga'to: Summory | Documentation | Signatures > | Compression > | Choracter encoding > | Rights > | Reference files
> Properties >
Summary
Name Seaphucs Interchange Format
version 19873
Other names
Identifiers v vt
Family

Classification

Disclasure Full

Description

Orientation e

Figure 5: PRONOM FMT/3 Page

Our first port of call will be the signature tab’:

MyPage (not sianed ink

AThe National Archives Search the archives | I

Advanced search

About us Education Records Information management Shop online

“ou are here: Home > Services for professionals > Preservation > PRONOM > Search by format » Details: Signatures

The technical registry T Welcome : About (@ Add an entry

PRONOM | @search ?Help [information resources

o ?Help : detailed report on file format
& Details: File format summary

Simple search File format ~ PRONOM Unique Identifier =~ Software = Vendor Lifecycles = Migration Pathways

Details for: Graphics Interchange Format 1987a B saveas.. XMLICSY & print

Go to: Summary > | Documentation > | Signatures | Compression » | Character encoding > | Rights > | Reference files
> Properties »

Signatures
External signatures Fils extension: gif
Internal signatures Name GIF 1987a
Description header & trailer
Byte sequences Position type Absolute from BOF
Offset 0
Byte order
value 474946383761
Position type #bsolute from EOF
Offset i
Byte order
value E:]

Figure 6: PRONOM FMT/3 Signature page

You can see there are two patterns in the signature. One at the Beginning Of the File (BOF) and one
at the End Of the File (EOF).

Let’s take a closer look at the BOF pattern. The PRONOM page tells us there is a ‘value’ of
‘474946383761’ that has a ‘0 offset absolute from BOF’. In layman’s terms, this means that the first
set of bytes in the file, starting at the very beginning of the file have the above pattern.

The thing to note is that the pattern is actually a hexadecimal representation of what turns out to be
readable text. To demonstrate this, open your HEX viewer, and enter the pattern as above, and see
what happens in the text view of that pattern:

4 http://www.nationalarchives.gov.uk/pronom/fmt/3

http://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=619&strPageToDisplay=signatures

7/14

http://www.nationalarchives.gov.uk/pronom/fmt/3
http://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=619&strPageToDisplay=signatures

How to write a new signature file for DROID

Y Hex Editor Meo
File Edit View Select ©Operations Bookmarks NTFS Streams Tools History Window Help

DR-ARRG 0 & EEHE te 3 B@RE DR fH @O

NEZOODRE ZD R%D SAP B owD Q%W »

A] [MNew Document 1% x|
00 01 02 03 0405 06 07 08 09 Oa0b 0Oc 0d Oe Of

00000000 47 49 46 38 37 61 GIFG7a
00000010
00000020

Figure 7: Hex view of a fmt/3 BOF pattern

As you can see from the screenshot, this pattern is actually something you can read and make sense
of because in this case it’s actually just the hex view of some text.

Repeat this process for the EOF pattern (‘3b’). You’ll notice that in the text view, this is not a
character but what appears to be a punctuation mark. It’s not really a punctuation mark, it’s a
reserved byte value that when encountered by a gif viewer tells the viewer that the end of the image
has been reached, it just ‘looks’ like a punctuation mark when it’s decoded as ASCII text.

Let’s have a look at this in practise. Download the example.gif image from Wikipedia® and open it in
your HEX viewer:

£ Hex Editor Neo
! File Edt View Select Operations Bookmarks NTFSStreams Tools History Window Help

DR-MEIRE L « BEEt B ReR¥E BEO
REZFQERND NP HE %8 PLAP # @edy A &

13| MExample.gf X|
00 0L 0203 0405 06 07 08 09 Oa Ob Oc Od Oe OF

00000000 | 47 49 46 38 37 61 13 0L 29 0L -7 ££ 00 00 Ol 00 GIF87a..).g¥....
00000010 | 08 Ob 07 25 04 06 11 12 OFf 18 18 17 00 la 4e 03 ...%....000000 N.
00000020 | 1b 43 08 18 46 42 07 06 04 19 57 Oc 04 b6 23 16 L.C..FB....W..9#.
00000030 | 1b 2c 14 16 16 1ld 34 1f 1f 1d 09 21 4f 02 23 5a epeeeade 0L H2
00000040 | Oc 00 £b 06 27 50 30 1L 20 24 25 23 2d 22 1f 3e Lell. "PO. ST

Figure 8: Hex view of the example.gif file

While you have the file open, take at look for the EOF marker and confirm it is what you expect, and
where you expect it to be.

Let’s now take a look at the DROID signature file to confirm these patterns exist in the format we
expect.

I’'m using signature file ‘DROID_SignatureFile_V55.xml’ which | took from the C:\Documents and
Settings\MY_USER_NAME\.droid6\signature_files location on my PC. It doesn’t really matter which
signature version you use, they will all have (mostly) the same details.

| opened the file in my browser by dragging it to a new tab.
Let’s search for our PUID of interest. Search for ‘PUID="fmt/3" in the XML document:

— <FileFormat ID="61%" MIME Type="image/gif" Name="CGraphics Interchange Format" PUTD="fint/=" Version="1%27a">
<InternalSignatmreID = 13<IntermalSignatuwreID >
<Extension=gif</Extension>
</FileFormat=>

Figure 9:XML for fmt/3 FileFormat ID

6 http://upload.wikimedia.org/wikipedia/en/8/8f/Example.gif

8/14

http://upload.wikimedia.org/wikipedia/en/8/8f/Example.gif

How to write a new signature file for DROID

This is the XML snippet that relates to our format of interest. This tells us that there the gif 1987a
format has an internal signature, and an extension of ‘.gif’. Let’s search for the relating internal
signature in the same XML file using the following search term: <InternalSignature ID="18"

— <InternalSignature ID="18" Specificity="Specific">
— <ByvteSequence Reference="BEOFoffzet">
— <SubSequence MinFragLength="0" Position="1" SubSeqMaxOffset="0" SubSeqMinOffset="0">
<Sequence>474346383761</Sequence>
<DefaultSluft>7 </D efanltShaft>
= Shift Byte="37">2=/Shift>
< Shift Byte="38">3</Shift=
< Shift Byte="46"=4</Shift=
< Shift Byte="47">f=/Shift>
=Shift Byte="45">5=/Shift>
=Shift Byte="41"=>1=/Shift>
</SubSequence=
</ByteSequence>
— <ByteSequence Reference="ECF offzet">
— <SubSequence MinFragLength="0" Position="1" SubSeqMaxOffset="0" SubSeqMinOffset="0">
=Sequence>3B</Sequence>
<DefaultSluft>-2</DefaultSlaft=
=Shift Byte="3B"=-1=/Shaft>
</SubSequence>
</ByteSequence>
</InternalSignature=

Figure 10: XML for fmt/3 Internal Signature
What you will find is some XML that looks complex, but really isn’t that hard to follow. Let’s try and

unpack it. Firstly there are two sections, each called a subsection. The subsection starts with a byte
sequence offset that tells DROID where it expects to find the pattern (in this case, either BOF or EOF).

The main parts of interest are the values you will find in the <shift> tags. Look closely at the values
you can see, and compare them with the pattern we made in the HEX viewer.

You’ll notice that they are of course the same. We said earlier the BOF pattern is 474946383761.
If we break this up into byte sized chucks we get: 47 49 46 38 37 61.

If we give these chunks, or bytes, an ordered number, we can make the following list:

Position | Byte Value

1 47

49

46

38

37

AN IWIN

61

To write this correctly for DROID we have to count backwards towards the offset, meaning we need
to reverse the order of the positions we just listed relative to their byte value. In simple terms, we
simply need to reverse the Position list; because that’s the order DROID expects the pattern to be
presented:

Position | Byte Value

6 47

49

46

38

37

RIN(W|AO

61

9/14

How to write a new signature file for DROID

Now compare this list, with the values found in the XML:
<DefaultSlaft=>7</DefaultShaft=
<Shaft Byte="37">2</Sluft>
=Shaft Byte="38">3</Shft>
<Shaft Byte="46">4</Sluft>
<Shift Byte="47">4</Slaft>
<Shaft Byte="4%">5</Sluft>
<Shift Byte="£1">1</Slaft>
Figure 11: Shift positions for fmt/3 BOF signature

| have reordered the values so they are easier to read in correct numerical order — DROID doesn’t
care for the order they are presented in, simply that it knows the byte position, and the expected
value. If you want to explore a little more, have a look at the <DefaultShift> value, in this case ‘7’ and
see if you can identify what its purpose is.

(Essentially the <default shift> is the length of the byte pattern + 1, so in this case the patternis 6
bytes long, so the shift is 7)

The National Archive have written a tool that make the creation of appropriate XML very simple — |
wanted to walk you through the process by hand so it’s a little more meaningful when we cover
some steps shortly. This is also a very simple format. Much more complex patterns exist, and use
some very useful notation from the regular expression world to help us build some complex patterns.
The TNA paper describes this in very good detail.

Hopefully this has demystified some of this process — we have discovered how the broad format
declaration, its file extension and internal signature(s) are linked together in the format signature
XML. We have seen how this is a mirror of the data held in PRONOM. And we have seen how we can
open a file in a HEX viewer and identify the parts of the file the internal signature refers to.

All that remains is for you to run the example.gif file through DROID, and confirm that DROID does in
fact return fmt/3 as the PUID for this file...

2. Making your own signatures

What follows is a step-by-step description of the process we have used at NLNZ to try and figure out
some of the patterns that relate to the objects we have collected over the years, but currently do not
have a matching PUID/pattern in the PRONOM registry.

2.1. Step 1 — collect set of suitable objects

Amass as many examples as possible for the target format. Ideally they should come from a diverse
range of content creators, and creating applications/systems to ensure good coverage of the pattern
variations found in the target file.

Sometimes it’s not possible to find more than a few examples. Smaller sets may result in ‘narrower’
or more specific signature definition than might be ideal.

Be very careful that you are looking at a collection of objects that are ‘the same’. It’s worth spending
time digging around in the set to make sure that they are all the same type, and suitable for a group
pattern.

You can look at a number of different things, including common file extensions, similar
creation/modification dates in the metadata, notes from the original object creator, ‘performance’ or

10/ 14

How to write a new signature file for DROID

view etc, when the files are rendered/mounted in/opened with the native application or any other
useful application (including HEX viewers, text viewers and image viewers, all of which might give you
a view of an object that sheds a little more light on their history.

If you have a large enough set of objects that are the same, it’s a very good idea to put some aside as
a final test set. This means that you won’t look at these objects until you have completed your
signature creation process, and you’ll use this subset to prove that the signature matches all the files
of your target type, including these files that have not been used in the signature creation process.

2.2. Step 2 — Hex hex hex
Once | have a refined set of objects and established a high degree of confidence in their suitability to
be a single format with a unique pattern(s), | look at the HEX of the set, searching for common
patterns or strings. In the example above we saw that the GIF files all have a common BOF string.
This would be an ideal situation as it’s easy to find, and easy to confirm that all objects of this type
have this pattern/string.

If there is no easily identifiable string, there is another tool that you can use to try and find matching
strings.

Marco Pontello has written an excellent tool called TrIDScan. This supports his format ID tool, but is
useful when creating DROID signatures none the less.

In essence TrIDScan allows you to give it your set of matching files and it will look for patterns that
are common with every file in the set. If it finds one, it writes a small piece of XML that contains the
patterns, and their offsets. From here you can use these patterns to construct your own DROID
patterns (after you have returned the small piece of XML to Marco so he can add it to his knowledge
base)

At this point it’s worth commenting on specificity in our pattern creation. The ideal situation is that
we can find a short and simple pattern that is unique to the format we are addressing. Let’s say for
example that we have a file set that has a BOF string of:

22 4c 6f 7265 6d 20 69 70 73 75 6d 20 64 6f 6¢ 6f 72 20 73 69 74 20 61 6d 65 74 2¢ 20 63 6f
6e 736563746574757220616469 7069 73 69 63 69 6e 67 20 65 6¢ 69 74 2¢ 20 73 65
64 20 64 6f 20 65 69 75 73 6d 6f 64 20 74 65 6d 70 6f 72 20 69 6e 63 69 64 69 64 75 6e 74 20
757420 6¢ 61 62 6f 72 65 20 65 74 20 64 6f 6¢ 6f 72 65 20 6d 61 67 6e 61 20 61 6¢ 69 71 75
61 2e 20 55 74 20 65 6e 69 6d 20 61 64 20 6d 69 6e 69 6d 20 76 65 6e 69 61 6d 2c 20 71 75
69 73 20 6e 6f 73 7472 75 64 20 65 78 65 72 63 69 74 61 74 69 6f 6e 20 75 6¢ 6¢ 61 6d 63 6f
206c 61 62 6f 72 69 73 20 6e 69 73 69 20 75 74 20 61 6¢ 69 71 75 69 70 20 65 78 20 65 61 20
63 6f 6d 6d 6f 64 6f 20 63 6f 6e 73 6571 75 61 74 2e 2044 7569 73 20 61 75 74 65 20 69 72
7572 65 20 64 6f 6¢ 6f 72 20 69 6e 20 72 65 70 72 65 68 65 6e 64 65 72 69 74 20 69 6e 20 76
6f 6¢c 7570 74 61 74 65 20 76 65 6¢ 69 74 20 65 73 73 65 20 63 69 6¢ 6¢ 75 6d 20 64 6f 6¢ 6f
72652065752066 7567 696174206e756c6c612070617269617475722e2045
78 63 657074 657572207369 6e 74 20 6f 63 63 61 65 63 61 742063 75 70 69 64 61 74
61 74 20 6e 6f 6e 20 70 72 6f 69 64 65 6e 74 2c 20 73 75 6e 74 20 69 6e 20 63 75 6¢ 70 61 20
7175 69 20 6f 66 66 69 63 69 61 20 64 65 73 65 72 75 6e 74 20 6d 6f 6¢ 6¢ 69 74 20 61 6e 69
6d 20 69 64 20 65 73 74 20 6¢c 61 62 6f 72 75 6d 2e

11/14

How to write a new signature file for DROID

It maybe that we don’t need to use the whole string as the pattern, because the odds of another file
having the same byte pattern so long is very slim, so perhaps we can ‘get away’ with a shorter
signature, which is more manageable. (Extra points to anyone who ‘decodes’ the hex above, and
figures out why this particular string is actually a terrible example of a ‘unique’ string of hex!....).

The trade off here is always trying to balance succinctness (and complexity) with uniqueness. This
quality of uniqueness is something that is very difficult to establish in a closed world, and it’s only by
testing our new signatures against our own diverse content collections, and by others doing the same
that we can ensure that we are creating signatures that we trust to be unique and specific to the
format of interest.

2.3. Step 3 — Identifying the format
On occasions we are fortunate to already have a good idea what the original format ‘is’. This is
perhaps not the place for a lengthy discussion on what comprises a unique format, so for conciseness
let’s assume a format definition as being a collection of digital objects that have a common structure
and function, and can be shown through the use of a unique set of signature patterns and/or a
common file extension.

It’s worth also defining what | mean by ‘knowing’ what a format is. In this case, | mean having a
name, description, or other identifiable features that allow us to describe this set as a useful and
purposeful group of common things. Following the example above, the fmt/3 PUID covers a specific
implementation of gif files that share a feature set, identifier, common file extension and render
requirements. These differ from fmt/4 gif files, which have a different, but similarly unique set of
features, identifiers, a common file extension and render requirements.

If we do not know the source of the original format we need to get our sleuthing hats on. There
might be some human-readable text in the format files that indicate its creating application, or
perhaps just a common string that can be researched for information on the internet. The two other
main disciplines that might have some answers are the digital forensic and software engineering
worlds. Both communities have various resources available online, and often even searching for the
hex strings you can see results in some data from useful places — discussion forums, troubleshooting
guides, or other informational sources.

As an example, take the hex value (search term: “47 49 46 38 37 61”) we used earlier for the gif
example, and see what your favourite search engine returns. If completed correctly, you should see
mention or reference to the gif format we have been discussing.

Take a record of any useful information you find so it can be added to the PRONOM record.

2.4. Step 4 — Writing the XML snippet
Once we have at least one pattern, we can use the TNA signature development tool to help us create
a valid XML snippet.

At the time of writing this remains a test/demo tool, so the URL may have changed by the time you
read this —it’s worth contacting the digital preservation team at the TNA if this is the case to see if
there is a new location for the tool.

Go to the tool page: http://test.linkeddatapronom.nationalarchives.gov.uk/sigdev/index.htm and
populate the tool with your data. | have used the gif as an example:

12/ 14

http://test.linkeddatapronom.nationalarchives.gov.uk/sigdev/index.htm

How to write a new signature file for DROID

AThe National Archives

Prototype

PRONOM: Signature Development Utility

Name: ftest gi signature |

Version: Extension: Igif I
PUID: Mimetype: Iimage,l’gif I

Signatwre: [474346383761 |
Anchor Absolute from BOF |v

Offset: |0 |

Max Offset: lo |

Signature: |3b |

Anchor Absolute from EQOF |v

Offset: |u |
Max Offser: |[| |

Add Sequence Save Signature File

4 Export to RDF ? Help
v

Figure 12: TNA Signature Development Tool
Save the signature file, using the button and put the signature file somewhere you can find it again.

Open the resulting XML and have a look at the new signature XML. You can see the two sections, and
the two sub sequences as previously described:

<?xml version="1.0" encoding="UTF-8" 7>
- <FFSignatureFile xmins="http://www.nationalarchives.gov.uk/pronom/SignatureFile" Version="1" DateCreated="2012-01-20T02:30:26+00:00">
- «InternalSignatureCollection>
- «<InternalSignature 1D="1" Specificity ="Specific">
- <ByteSequence Reference="BOFoffset'>
- <SubSeguence MinFraglength="0" Position="1" SubSegMaxOffset="0" SubSeqMinOffset="0">
<Sequence>474946383761</Sequence>
<DefaultShift=7 </DefaultShift:
<Shift Byte="47">6</Shift>
<Shift Byte="49">5</Shift>
<Shift Byte="46">4</Shift>
<Shift Byte="38">3</Shift>
<Shift Byte="37">2</Shift>
<Shift Byte="61">1</Shift>
</SubSequence=
</ByteSequence>
- <ByteSequence Reference="EOFoffset":
- <SubSequence MinFragLength="0" Position="1" SubSegMaxOffset="0" SubSegMinOffset="0">
<Sequence=3B</Sequence>
<DefaultShift=-2 </DefaultShift=>
<Shift Byte="3B">-1</Shift>
</SubSequence:
«</ByteSequence>
</InternalSignature>
</InternalSignatureCollection:>
- <FileFormatCollection=
- <FileFormat ID="1" Name="test gif signature" PUID="dev/1" Version="1.0" MIMEType="image/ gif'>
<InternalSignaturelD=1</InternalSignaturelD >
<Extension=gif</Extension>
</FileFormat:
</FileFormatCollection =
</FFSignatureFile=

Figure 13: Example XML snippet for a new format

13/14

How to write a new signature file for DROID

2.5. Step 5 — Testing testing testing
Now we have a signature file, let’s upload this to DROID and test it. Fire up DROID — I’'m using v6 —
and go to the upload signature files menu (ctrl+shift+u), browse to your newly created signature file,
and click on upload. Once it has uploaded test your new signature against your starting set. If things
have worked out, you should see the new PUID you have assigned against all the files in your set. In
my case, | ran the example.gif file through DROID, and was given a PUID match of dev/1 — as per my
new signature file above.

& DROID v6.01 [;][E]

File Edit Run Filtker Report Tools Help

OPBE2 += 00 7 |

Mew Open Save Export Filker Report

Upkitled-1 % | Untitled-2 =

= Resour,.. Extension Size Last rodi, | Ids Forrnat Version Mirne by pe PUID Method
] Shpa... aqif 386 KB 20/01/12 1., o kest qif sigra. .. 1.0 image/alf e Signature

Figure 14: DROID v6 result with only new xml snippet

If some of your files do not get correct matches, its back to the drawing board for signatures I'm
afraid. If you have a reserved sunset (as per step 1) now would be a great time to break them out and
see if they all get matches.

Assuming that this stage is okay (i.e. you only see matches, and no fails in the test set), extend your
test pool to include some other files of a different type. As the signature only covers the single new
format, you should only see matches against your new format type, and nothing else.

Assuming this step is okay it would be worthwhile amending an existing full XML signature file to
include your new type — you will need to make sure there are no ID number clashes, for the two
reference fields (fileFormatID and InternalSignaturelD). You can edit the XML in a txt editor.

Upload your new full signature file, and re-run your first two tests. You should see that in the first
test, running only your new format files, only complete matches against your new PUID, and in the
second test you should see matches the same as you would have done before, apart from the new
addition of your newly matched PUID.

Finally it's worth running the same test of a large collection of files, looking for false positives. If
you’'ve followed these steps carefully, this should be unlikely, but it’s always worth making sure.

2.6. Step 6 — Submit to PRONOM

Once you have completed the testing it’s time to submit your new signature file, and supporting data
to PRONOM. There is the ‘submit new format’ form on the TNA/PRONOM website, its worth reading
the notes page first: http://www.nationalarchives.gov.uk/PRONOM/submitinfo.htm

14 /14

http://www.nationalarchives.gov.uk/PRONOM/submitinfo.htm

